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In this paper the parameter selection in semiconductor device design is posed as
an optimization problem: given an ideal voltage-currewitl() characteristic, find
one or more physical and geometrical parameters such thet-theharacteristic of
the device matches the ideal one optimally with respect to a prescribed performance
criterion. The voltage-current characteristic of a semiconductor device is governed
by a set of nonlinear partial differential equations (PDE), and thus a black-box ap-
proach is taken for the numerical solution of the PDEs. Various existing numerical
methods are proposed for the solution of the nonlinear optimization problem. The
Jacobian of the cost function is ill-conditioned and a scaling technique is thus pro-
posed to stabilize the resulting linear system. Numerical experiments, performed to
show the usefulness of this approach, demonstrate that the approach always gives
optimal or near-optimal solutions to the test problems in both two and three dimen-
sions. (© 1999 Academic Press

1. INTRODUCTION

The electrical behaviour of a semiconductor device is governed by the following sys
of (scaled) nonlinear second-order elliptic equations [14, 15]

V2 —n+p=—N, (1.1)
V.Jy—R@,n, p) =0, (1.2)
V-Jp+ R, n, p) =0, (1.3)

in @ c R™(m= 2, 3) with appropriate boundary conditions, where the current densities
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andJ, are defined respectively by

h=Vn—nvy,
Jp=—(Vp+ pVY).

Herevy is the electrostatic potential,is the electron concentratiop,is the hole concen-
tration, N denotes the doping function, afiidenotes the recombination/generation rate
which is assumed to be monotone with respeat @nd p. One example is the (scaled)
Shockley—Read—Hall type recombination (cf. [14, Chap. 4]) given by

np-—1

RN, p) = m(p+1) + M+ 1)

wherer, andr,, are positive constants. We assume that the bourtdanf the device region

Q is polygonal or polyhedral, and 182, C 92 denote the union of all ohmic contacts
(i.e., terminals of a device) arid2y the part of boundary such thafp, U3y =9$2. On
0Q2p the values ofis, n, and p are given as functions of the applied bMsand onaQy
the normal derivatives o}, n, and p vanish because it is normally insulated. The curren
flowing in or out of a terminat € 92 is given by

| = /(Jn +Jp) - nds, (1.4)

wheren denotes the outward unit normal vectora®p. A typical 2D p-n diode with
two ohmic contacts is depicted in Fig. 1 where the interior curve, calleg-thgunction,
represents the interface of tipeandn regions. We denote this curve B For simplicity,
we assume, in the rest of this paper, that the doping fundtida a step function of the
form

N — {a in p-region 15)

-b in n-region

wherea andb are constants in the range from'i@o 10%. It is expected that all the
techniques presented here are also applicable to the case of continuous doping pro

ohmic contact

) / H :
p-n junction
L /

p
n
I ohmic contact
0 volt

FIG. 1. Atypical two-dimensional diode.
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though the latter case is not discussed in the present paper. Noté thaiso a function
of the p-n junction C. Given N, the dimension of a device, and the applied bBigsve
can solve (1.1)—(1.3) numerically using an appropriate numerical method and then eva
the terminal current (V) flowing in or out of the device using (1.4) (cf. [10, 11]). The
problem can be solved for various biaségo obtain theV-l characteristic for a given
device.

In the conventional design cycle of a device, the above process will be repeated L
different doping function®N and different geometries until thé-1 characteristic matches
the required one within a given error range. This approach is time-consuming, bec
after each iteration in the design cycle, the new values of the parameters to be us
the next iteration are chosen empirically from previous experience which may be far a
from the optimal choice. In this paper the problem is posed as the following optimizat
problem: given anideal-I characteristic curvé,(v), find some physical and/or geometric
parameters such that the| characteristic of the device matches the ideal one optima
with respect to a specified performance criterion. This problem is formulated as a nonli
optimization problem, and the cost function of the problem consists of two compet
quadratic terms with penalty parameters. By a judicious choice of these parameters
can balance the competing costs. Various existing efficient numerical methods are proy
for the numerical solution of this nonlinear optimization problem. Due to the large variatic
in the magnitude of parameters and the solutions to the semiconductor device equa
the Jacobian of the optimization problem is ill-conditioned. To overcome this difficulty
scaling technique is proposed to balance the entries of the Jacobian so that the prc
is numerically more stable. This approach is applied to some test problems and al
numerical results demonstrate the usefulness of the approach. To our best knowledge
work on this approach to semiconductor device design can be found in the literature (ci
and the references therein), though, in practice, it will dramatically reduce the time requ
in the design cycle of a semiconductor device.

2. THE FORMULATION OF THE PROBLEM

We consider the formulation of the semiconductor device parameter design. For simpl
we assume hereafter that the geometry of a device is rectangular or brick, and thu
device region €2 =[0, L,] x [0, Ly] in two dimensions of2 =[0, L,] x [0, Ly] x [0, L]
in three dimensions. We also assume that phe junction of the device consists of line
segments or facets parallel to one of the axes. In this casg-thginction is uniquely
determined by its intercept on each of the axes in the intervdl,{p [0, L], or [0, L,].
Letc, denote the ratio of the the intercept on thaxis andL«, ¢, the ratio of the intercept
on they-axis andL y, andc, the ratio of the intercept on tteaxis andL,. Then, thep-n
junction is uniquely determined by, ¢y, andc,. Using this notation, we formulate the
above parameter selection problem in semiconductor design as the following optimizz
problem:

Problem 1. Given an idealV-l characteristic functiorig(v) on [0, Vima, find the
doping parameters, b, and the geometrical parametdrsg, Ly, L,, ¢, ¢y, andc, such
that

Vmax
F(a, b, c, Cy, Cs Ly, Ly, Ly) = (x/ (I () = lg()?dv + B(LE + L + L2)
0
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is minimized subject to the bound constraints

10" < a < 107, (2.1)
101 < b < 107, (2.2)
o < o < (2.3)
o < ¢y <o (2.4)
i < ¢, < ¢ (2.5)
LM < L, < LM (2.6)
L™ <Ly < Ly (2.7)
Lmn < |, < LM (2.8)

whereLy, Ly, andL; are the length, width, and height of the devicg,cy, andc, are the
ratios defined beforey, 8 are two positive constants, ahds the terminal current.

Thisis a continuous least squares problem and the cost furfettontains two competing
performance criteria. This is becausg= Ly =L, =0 is the obviously optimal solution
for the second term of the cost. Thus, we need to chacsed 8 properly to balance the
two terms inF. In practice, Problem 1 can be approximated by taking a set of appropri
sampling points;,i =1,2,...,m, in [0, Vmay, leading to

Problem 2. GivenanideaV/-I characteristic functioly(v) on [0, Vimay, find the doping
parameters, b, and the geometrical parametegscy, ¢;, Ly, Ly, andL, such that

E@)=(—-19 Al —lg) +B(LE+LE+L7) (2.9)
is minimized subject to (2.1)—(2.8), where

I = (1 (v, 0), | (v2,0),...,1(vm, 0)),
|g = (lg(vl), |g(U2), cees |g(Um))v

9 = (av bv CX5 Cy, CZa LX’ Ly, LZ)

and A= diag(;) is a diagonal matrix.

Herea; >0(i=1,2,...,m)andB > 0 are weights to be chosen later.

Problem 2 is a nonlinear optimization problem with only bound constraints. The nonline
differential equations (1.1)—(1.3) do not appear explicitly in the formulation, but the curre
I depends on these equations through the expression (1.4). The dependence of the
function on the parametérand the applied biasis complicated, and thus the solvability
of Problem 2 is theoretically difficult. (Even the solvability of the nonlinear PDE systel
(1.1)—(1.3) is still an open problem unless under some restrictive assumptions (cf.,
example, [9]).) However, from our computational experience, Problem 2 is computat
though local minima may exist, as will be seen in Section 4.
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3. THE NUMERICAL METHODS

We now consider the numerical solution of Problem 2.
Starting from an initial guesgy, Problem 2 can be solved iteratively. At each step &
incrementy; is calculated such that

E(6 +66))

is minimized with respect t89;, where), andso; are theth approximation anith increment
of 0, respectively. The iterative procedure continues until the relative girred ¢12/|[1 4ll2
and the change inL(, Ly, L) in the Euclidean nornjL ||, between two consecutive iter-
ations are smaller than a given tolerance.

The Gauss—Newton Method

To calculate the incremeid; at each step, the Gauss—Newton Method is used. Let

l=(@,6), 1 2,6),...,1 (m6), L, Ly, L)T,
Ig = (Ig(vy). lg(v2). ... lg(vm). 0.0.0)T,
B = dlagal’ LICEO ) Olm, /3’ ﬂv /3)
Then
E@) = —Tg)TB({ —Ty).
Leti" =1(4). Then Taylor's formula for vector valued functions gives
Ao 1
F=1 1+ 386 + é{aeiTGlaei, ..., 867 G306}, (3.1)
where
) Ay Ay Ay ) Ay ) 3l
03 aby ac, acy, acy L, oLy, L
Nom)  Dm) A  Aew) A Dow) w3l m)
J = da by 3Cx acy, acy Ly, Ly, L,
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

and the matrG; denotes the Hessian ﬁ‘fevaluated af +r86; withO<r < 1. Omitting
the second order term in (3.1), we have

f: fi + J;86;
whenéé; is small. Using thisE(6; + 86;) can be approximated by
E@G +66) = (I + 386, — 1) B(I" + 386 — 1)
+ (3860 TBA" — i) + (J86)T B(J56).
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log(b) log(a)

FIG. 2. The cost function against doping concentratiaradb.
This is a quadratic form i6¢; , and the minimum poiriy;* of this quadratic function satisfies
VE® +86}) =0,
which leads to
(37BJ)s67 = —3TB( —Ty). (3.2)

The solution to (3.2) defines thth search direction called the Gauss—Newton direction.

The Levenberg—Marquardt Method

From computational studies we see that the partial derivatives of the cost fuBatidh
respect to the parametexgndb in the doping function are large wharandb are close to
their lower bounds and small wharandb are close to their upper bound (see Fig. 2). Thus
initial guesses foa andb are always chosen to be their lower bound®.@nd at the first
few iterations, we also need to restrict the step size to avoid oscillations. Mathematice
this can be formulated as

min E6; + 86,)
subject to(86;) T (86) < A,

whereA is a positive constant. The above inequality constraint can be added to the ¢
function to form

mMiNE@; + 86)) +A{A — (86)T (860},

wherel > 0 is a penalty parameter called the Marquardt parameter. The optimalpdint
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of this problem is given by
(3TBJ +11)867 = —3TB(I — I,

wherel denotes the unit matrix. This method is called the Levenberg—Marquardt Metl
(cf. [7, 8]) which is a combination of the Gauss—Newton Method and the Steepest Des
Method (cf. [13]). The Marquardt parametecan be chosen properly to avoid unbounde
oscillation in the reestimation procedure. The same technique can also be applied t
decision variablea andb in the original cost function (2.9). This yields a cost function

E@)=(—-19TAl —1g)+B(LZ+ L2+ L2) + y (@ + b

corresponding to (2.9).
Let
= (10,1 (v2.0),....1 (m 6), L. Ly, L.a,b)T,
g = (Ig(v), Ig(v2), ..., lg(vm),0,0,0,0,0),
B = d|aq051, ey Olm’ /35 ,8’ ﬂa )/7 J/)

ThenE(#) can be rewritten as
E@) = -9 B( - ly.

The corresponding Levenberg—Marquardt correciignsatisfies

(3TB3 +a1) 867 = —JTBA - Ty, (3.3)
where

) dl(wy) dl) ) dlwy dlw) Al dl(w)

FEY aby ac, acy, acy, Ly, ALy ALy
N Nm)  Nm) lem m) 3m Aem 3w

EE] ab; acy acy, 0y dLy; oLy, L

i=| o 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Using the correctiodé;*, we updatel: by

F=1+ ooy, (3.4)

The values of the elements dhmay differ from each other by several orders of magnitud
This may cause some stability problems in real computation. To avoid this, welsbgla



248 LEE, WANG, AND TEO

diagonal matrixM with positive diagonal entries so thdthas more balanced entries. The
scaled equation corresponding to (3.3) is

TB(I —

Gy

(JTBJ, +11)067 = —

where

[P

i=JM and 867 = M50 (3.5)

The updating formula corresponding to (3.4) then becomes

'+

Gy

1867,

We comment that all the partial derivatives Jnare approximated by forward finite
differences. More specically,

ali,0) 1(i,0+h-e)—1(v,0)

96, h ’ (3:6)

wheree; is a unit vector andh is a small positive increment.

We also comment that the above method is based on the assumption that the indepe
variablev={vq, v, ..., vm}, does not contain any observation errors. This is because it
normally not from an experimental observation. In the casevbaes contain observation
errors, the Orthogonal Distance Regression Method may be used, instead of the a
Gauss—Newton or Levenberg—Marquardt Method. For details of the Orthogonal Dista
Regression Method, we refer to [1].

Gummel’'s Method

The solvability of the nonlinear system (1.1)—(1.3) in general is a long-standing op
problem, but in the case that tlie= 0 and the applied bias is close to zero, it can be show
that the system is unique solvable (cf., for example, [9]). In practice, this nonlinear syst
can be solved iteratively by Gummel’s method [5] defined as

1. Given an initial valuey?®, n®, p°) letk =0.
2. Solve the following system sequentially fark™, nkt1, pk+1)

V2wk+1 —nk— pk N
V. (Vnk+l _ nk+1vwk+l) _ R(wkﬁ-l’ nk’ pk) — 0,
V. (v pk+l 4 pk+lV1//k+l) _ R(wk+l nk+l pk) -0
with appropriate boundary conditions.
3. Test for convergence. If failed, incredsand repeat step 2.

In Step 2 of the above algorithm we deal with equations of the form

—V.-(Vu—cu)+Gu=F in Q (3.7)

u|aQD =0, (Vu—cu) - nlse, =0. (3.8)
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This problem can be solved effectively by the exponentially fitted finite volume metf
discussed in [10, 11, 12]. We now give a brief account of this method in two dimensior

The Exponentially Fitted Finite Volume Scheme

To discuss the exponential fitted finite volume scheme (cf. [10, 11, 12]), we first de
some meshes oft. Let T be any partition of2 by a set of triangles. LeX = {x;}) be
the set of all vertices of andE = {g }} the set of edges oF. Without loss of generality
we assume that the nodes in X and the edgeE imre numbered such thad' = {xi}l/
ance’ = {g})"" are respectively the set of nodes{mot ondQ2p and the set of edges i
not onoQ2p.

DerINITION3.1. T isaDelaunay meshif, for evetye T, the circumcircle of the element
contains no other vertices i (cf. [2]).

We assume henceforth thatis a Delaunay triangulation.
DEFINITION 3.2. The Dirichlet tessellatio®, corresponding to the triangulatidnis
defined byD = {d; }) where the tile

0 ={XeQ:|x=X|<|[Xx=Xj|,Xj € X, ]#Ii}

for all x; € X (cf. [3]).

We remark that for eack € X, the boundaryyd; of the tile d; is the polygon having
as its vertices the circumcentres of all triangles with common vegtekach segment of
ad; is perpendicular to one of the edges sharing the vegt€see Fig. 3). The Dirichlet
tessellatiorD is a polygonal mesh dual to the Delaunay méskoreach =1,2, ..., N/,
integrating (3.7)—(3.8) oved and applying Green'’s formula to the first term we have

— (Vu—cu)-nds+ GudQ:/FdQ.
ad; d di

Fori=1,2,..., N, letu; be the approximate value of(x) at x;. Using the one-point

_— mesh T
—_ mesh D

FIG. 3. Part of a Delaunay mesh and dual Dirichlet tessellatioD.
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P

L J

0

FIG. 4. Notation for edges and nodes.

quadrature rule we have from the above

— (Vu—cu) -nds+ Gju;|d | = F|di], (3.9
ad;

whereG; = G(x;) andF = F(x). We now consider the approximation of the first term in
(3.9). Letl; ={j : & j € E} denote the index set of neighbouring nodex;ofwheres ;
denotes the edge joining andx;, as shown in Fig. 4. Sincgd; is polygonal and each of
its sides is perpendicular to one of the edges joiningve have

l (Vu—cu)~nds=z< (Vu—cu)-q,»ds) , (3.10)
8di j€|i |i~i

wherel; ; denotes the segment &f; perpendicular to the edgg; and is oriented coun-
terclockwise with respect ta (see Fig. 4) an@ ; denotes the unit vector from to x;.
For anyj € |; we now consider the two-point boundary value problem

V(Vu-gj—c ju-6;=0 one (3.11)
uxi) =ui,  u(xj) =uj, (3.12)

whereg; j is a constant approximation o & ; one ;. Solving this equation analytically
we obtain

1
fij=Vu-ej—cju= 5 (B@.ila;hu; — B(=aijleDui). (3.13)
N

whereB(x) is the Bernoulli function defined by

X if x %0,
Bx)=<¢ ¢ 3.14
*) { 1 if x =0. ( )
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Obviously f; j defines a constant approximation to the integrand on the right side of (3.
Furthermore the solution of (3.10) also defines a piecewise exponential approximatic
the solution of (3.7) o\ ;. Substituting (3.13) into (3.10) and the result into (3.9) we obta

[l
> (B(—c jle.jDui — B(G jle jlu)) + Giuj = R, (3.15)
o lejllch ;]
foralli =1, 2, ..., N.In matrix form, we have
(E4+DU=F,

where E and D denote the matrices corresponding respectively to the first and sec
terms of (3.15)J = (ug, U, ..., un) " andF = (fy, fa, ..., fy)T. The matrixE + D is
unsymmetric unless; ; =0 for alli =1,2,..., N" and all j € I;. However, it is easy to
verify that E is an M-matrix (cf. [11]).

We comment that the above method can be extended to three dimensions easi
detailed discussion of this can be found, for example, in [4]. We also comment that u:
the numerical solution from the above discretization scheme, we can evaluate the cur
flowing in or out of a device, based on (1.4). For detailed discussions of this, we refe
[10, 11, 4].

4. NUMERICAL EXPERIMENTS

The numerical methods described in the previous section are applied to some two.
three-dimensional test problems. All computations were performed in Fortran 77 dot
precision on a Unix Workstation. In what follows, we usgective characteristito denote
the discretd -V characteristic generated by directly solving Egs. (1.1)—(1.3) using a gi
parameter set. This given parameter set is referred igeas solution and the solution to
Problem 2 using the objective characteristic is referred tomsnal solution In all the
examples below, the bounds in the constraints (2.6)—(2.8) are chosen to be

L = L = L0 = 2pm, LT L= LT 15

Also, the increment in the finite difference approximation (3.6) is chosen to bé 1(
for the doping parameters andb and 10° um for Ly, Ly, andL,. The units for the
doping concentration parameterandb and the geometric parametérg, Ly, andL, are
respectively 1/crh(or 1/cn? in 3D) andum. However, these are omitted below for brevity

ExampLE 1. A Two-Dimensional Diode. A two-dimensional rectangular diode wit
width L and heightLy, depicted in Fig. 5, is chosen to be our first test problem. Tt
p-region of the device is rectangular with widfjL . and height3L,, as shown in Fig. 5.
(Correspondinglyey = ¢y = 1—70 in (2.3)and (2.4).) The parametergi =1, ..., m), 8, and
y are chosen to be 1§) 10'°, and 108, respectively, and the scaling matiik in (3.5)
is chosen to be diag (3010°, 10-°, 10°). This example is studied numerically in the
following two different situations.

Case 1. Decision variables, b, andLy =Ly. In this case, we assume that the devic
is a square and the doping function is piecewise constant. Thus, we are to determine
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Anode

p

Cathode

FIG.5. A two-dimensional rectangular diode.

parametersa, b in the doping function, and the dimension of the device= L. Two
different discreteV-I characteristicdq ;1 andlg», listed in Tables | and I, respectively,
are used as the objective characteristics. These objective characteristics are generat
solving Egs. (1.1)—(1.3) using the parameter sets

(a=10"b=10" Ly =10, Ly = 10)
and
(a=10" b=10" Ly, = 10, Ly = 10)

respectively for the applied forward biases listed in Tables | and Il.
To solve the optimization problems, we choose the following stopping criteria:

1. the relative errojtl — I4|l2/|14ll2 < 10~% (10~ for case 1, usingj 1 and 10°° for
Case 2, usingy 1), and

2. the difference in(L%+L3)"? between two consecutive iterates is smallel
than 10°2.

The solution procedure stops when both of the above criteria are satisfied. The re:s
obtained for various initial values are listed in Tables Il and IV. From the tables we see t
the relative error is always smaller thanf0From the tables we also see that the optima
solutions are very accurate fby 1, and are reasonably close to the ideal solution §or

Case 2. Decision variables, b, Ly, andLy. This case differs from Case 1 in the way
that we do not assume that = L. Thus, there are four independent parameters to b
determined. The problem s solved using the objective characteristics listed in Tables I an
the same criterionasin Case 1is usedinthis case, and the results are listed in Tables V ar

TABLE |
The V-l Characteristic | 4

vV 0.2143 0.2857 0.3571 0.4286 0.5

| 6.4903-10**  8.7707-10°° 1.1387-10°® 1.0729-107 4.8370-10°7
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TABLE Il
The V-l Characteristic | 4,

253

VvV 0.2143 0.2857 0.3571 0.4286 0.5
| 4.1961-10® 6.6184-10'? 1.0421.101° 1.6397-10° 25754.10°%
TABLE 11l
The Results for Example 1, Case 1, Usiny-l Characteristic | 4,
Initial values Optimal solution
a b Ly Ly a b Ly Ly No. iter. Rel. err.
1.0e10 1.0e10 150 150 1.0el4 1.0el4 10.0 10.0 23 5.89e-13
1.0e11 1.0e11 150 150 1.0e14 1.0e14 100 10.0 22 1.74e-13
1.0el2 1.0el2 150 150 1.0el4 1.0e14 100 10.0 24 8.82e-14
1.0e13 1.0e13 150 15.0 1.0e14 1.0e14 100 10.0 21 7.92e-13
1.0e12 1.0e12 8.0 80 1.0el14 1.0el4 100 10.0 19 8.69e-12
TABLE IV
The Results for Example 1, Case 1, Usiny-l Characteristic | 4
Initial values Optimal solution
a b Ly Ly a b Ly Ly No. iter.  Rel. err.
1.0el2 1.0el12 15.0 15.0 9.75el5 1.03el6 9.39 9.39 57 5.50e-5
1.0e13 1.0e13 150 15.0 1.08e16 3.12e16 6.53 6.53 40 2.90e-5
1.0e11 1.0e11 150 150 5.27el5 7.12e16 11.8 11.8 65 1.51e-5
1.0e10 1.0e10 150 150 8.07el5 1.29el6 10.3 10.3 100 2.35e-5
TABLE V
The Results for Example 1, Case 2, Usiny-l Characteristic | 4,
Initial values Optimal solution
a b Ly Ly a b Ly Ly No. iter.  Rel. err.
1.0e12 1.0e12 150 150 1.0e14 1.0e14 100 10.0 22 1.59e-8
1.0e10 1.0e10 150 150 1.0e14 1.0e14 10.0 10.0 19 8.18e-7
1.0e10 1.0e10 15.0 50 1.0el4 1.0e14 100 10.0 40 2.55e-8
1.0e12 1.0e12 15.0 50 1.0el4 1.0e14 10.0 10.0 84 3.96e-8
TABLE VI
The Results for Example 1, Case 2, Usiny-I Characteristic I g
Initial values Optimal solution
a b Ly Ly a b Ly Ly, No.iter. Relerr
1.0e11 1.0e11 150 15.0 1.32e16 1.44e16 123 6.61 52 3.35e-5
1.0e12 1.0el12 150 15.0 1.42e16 1.38e16 12.2 6.40 53 5.53e-5
1.0el3 1.0e13 15.0 15.0 5.95e15 1.67el6 11.3 13.8 43 5.73e-5
1.0e12 1.0el2 5.0 5.0 1.77e16 2.25e16 125 3.79 40 9.61e-5
1.0e14 1.0e14 15.0 5.0 1.55e16 1.35e16 123 6.11 48 9.15e-5
1.0e10 1.0e10 15.0 5.0 1.85e16 1.07el6 13.7 7.41 46 6.93e-5
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TABLE VI
The V-l Characteristic | 43

VvV 0.2143 0.2857 0.3571 0.4286 0.5

| 3.2050-10  4.1269-10%° 5.2201-10° 4.5746.-10° 1.8943- 1077

ExampLE 2. A Three-Dimensional Diode. The second test problem is chosen to be
three-dimensional rectangular prismatic diode with widfhdepthL , and height_,. The
p-region is also chosen to be a rectangular prism with W%m(, depthli0 Ly, and height
%LZ. (Correspondingly, the constraints (2.3)—(2.5) are replaced byc, =c, =7/10.)
For simplicity, we assume that, = L. Thus the decision variables a@eb in the dop-
ing function, and the dimensions of the devicg= Ly andL,. The parameters; (i =
1,...,m), B, andy are chosen to be %8 1%, and 108, respectively, and the scaling
matrix M in (3.5) is chosen to be diag(Lal0°, 10°°, 1072, 107°). Two differentV-I
Characteristicdy 3 and |y 4 listed in Tables VII and VIII, respectively, are used as the ob
jective characteristics. These objective characteristics are generated by solving (1.1)—
using the parameter sets

(a=10"b=10" Ly =10 Ly =10, L, = 10)
and
(a=10"b=10" L, =10 Ly =10 L, = 10),

respectively, for various applied forward biases. The solution procedure stops if the follc
ing items are satisfied:

1. relative errof|l —I4ll2/lllgll2 < 1.2 x 10~ (107 or the case usingy 3) and
2. the difference in(LZ + L+ L2)"2 between two consecutive iterates is smallel
than 10°3.

Various initial values are used, and the results are listed in Tables IX and X, respectiv
From the tables we see that the relative errors are always smaller.thari@ . It is also
seen that the optimal solutions are very accuratd §gr and are reasonably close to the
ideal solution forlg 4.

We remark that the optimal solutions figr> andl 4 are harder to obtain than fbg 1 and
I3, since the partial derivatives of the cost funct®with respect to the doping parameter
andb are very small when the doping parameters are close to their upper bounds (cf. Fig

ExampLE 3. A Two-Dimensional Diode with a Variablp-n Junction. The third test
problem is chosen to be a two-dimensional rectangular diode with a vapafjenction.
The configuration of the device is the same as that in Fig. 5, bytdfegion has the width

TABLE VI
The V-l Characteristic |44

vV 0.2143 0.2857 0.3571 0.4286 0.5

| 21158108  3.3410-10'? 5.2657-10°* 82842101 1.2987-10°°




SEMICONDUCTOR DEVICE DESIGNS 255

TABLE IX
The Results for Example 2, Using Objective/-l Characteristic 143

Initial values Optimal solution
a b Le=Ly L, a b Ly=L, L, No. iter. Rel. err.
1.0e10 1.0el0 15.0 15.0 9.9e13 9.7el3 10.2 12.0 19 4.3e-7
1.0el2 1.0el12 15.0 15.0 1.0el14 1.0el4 10.0 10.0 24 6.6e-8
1.0ell1 1.0el1 15.0 12.0 9.9e13 9.7el3 10.2 12.0 23 3.6e-7
1.0e12 1.0el2 15.0 10.0 1.0el4 1.0el4 10.0 10.0 19 2.2e-7
1.0ell 1.0e13 14.0 14.0 9.9e13 9.7el3 10.2 12.0 27 6.0e-7

(1—cx)Lx and the heightl — cy) Ly wherec, andcy are the ratios defined in Section 2.
For simplicity, we assume thdt, = Ly andc, =cy. Thus, the decision variables aag
b in the doping function, the dimension parametgr=Ly, and the parameter for the
p-n junction ¢, =cy. The penalty parameterg (i=1, ..., m), 8, andy are chosen to
be 1G%, 10'°, and 108, respectively, and the scaling matm in (3.5) is chosen to be
diag(1@®, 10°, 1072, 4.0 x 10~°). The bounds in (2.3) and (2.4) are chossen to be
qit=cy"=06 and C*=c*=075

The incremenh in (3.6) forc, is chosen to be & 1073,

To solve the problem, we choose thel characteristicly s, listed in Table | as the
objective characteristic, which is generated by solving (1.1)—(1.3) using the parametel

(a=10"b=10" Ly =10 Ly = 10,¢c = 0.7, ¢y = 0.7).
The solution procedure stops when both of the conditions

1. the relative errofil — l4ll2/lll4ll2 <107°, and

2. the difference inlL% + L7)"/? between two consecutive iterates is smaller tharf 10
are satisfied. Two initial guesses are used, and the results are listed in Table XI. Fror
table we see that the relative errors are always smaller tiftax 506.

5. CONCLUSION

In this paper we posed the parameter selection in semiconductor device design
optimization problem with competing costs. Various existing efficient methods

TABLE X
The Results for Example 2, Using Objective/-l Characteristic 144

Initial values Optimal solution
a b Li=L, L, a b Li=Ly L, No. iter.  Rel. err.
1.0e10 1.0el0 15.0 15.0 1.1e16 9.9el5 115 15.0 31 1.0e-4
1.0e10 1.0el0 15.0 10.0 1.1el6 7.7el5 10.0 9.81 30 7.9e-5
1.0ell 1.0ell 15.0 9.0 1.6el6 6.0el15 10.7 10.6 30 6.7e-5
1.0e11 1.0ell 14.0 14.0 1.2el6 6.3el5 10.2 14.9 30 3.6e-5

1.0el3 1.0ell 14.0 140 1.2el6 8.8el5 114 14.8 30 8.9e-5
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TABLE XI
The Resuts for Example 3

Initial values Optimal solution
a=b Ly=Ly c¢=¢ a b Ly=Ly c=c¢, No.iter Rel.err.
1.0e10 15.0 0.72 9.98e13 1.00e14  10.002  0.7008 25 5.6e-6
1.0e10 15.0 0.68 1.07e14 9.61el3  10.129 0.6773 22 5.5e-6

nonlinear optimization, nonlinear partial differential equations were discussed for the |
merical solution of this problem. A scaling technique was also proposed to avoid numer
instability in computation. Numerical experiments for various model devices were p
formed and the numerical results showed the effectiveness of the optimization approac
the semiconductor device design.
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