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In this paper the parameter selection in semiconductor device design is posed as
an optimization problem: given an ideal voltage-current (V-I ) characteristic, find
one or more physical and geometrical parameters such that theV-I characteristic of
the device matches the ideal one optimally with respect to a prescribed performance
criterion. The voltage-current characteristic of a semiconductor device is governed
by a set of nonlinear partial differential equations (PDE), and thus a black-box ap-
proach is taken for the numerical solution of the PDEs. Various existing numerical
methods are proposed for the solution of the nonlinear optimization problem. The
Jacobian of the cost function is ill-conditioned and a scaling technique is thus pro-
posed to stabilize the resulting linear system. Numerical experiments, performed to
show the usefulness of this approach, demonstrate that the approach always gives
optimal or near-optimal solutions to the test problems in both two and three dimen-
sions. c© 1999 Academic Press

1. INTRODUCTION

The electrical behaviour of a semiconductor device is governed by the following system
of (scaled) nonlinear second-order elliptic equations [14, 15]

∇2ψ − n+ p = −N, (1.1)

∇ · Jn − R(ψ, n, p) = 0, (1.2)

∇ · Jp + R(ψ, n, p) = 0, (1.3)

in Ä⊂Rm(m= 2, 3) with appropriate boundary conditions, where the current densitiesJn
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andJp are defined respectively by

Jn = ∇n− n∇ψ,
Jp = −(∇ p+ p∇ψ).

Hereψ is the electrostatic potential,n is the electron concentration,p is the hole concen-
tration, N denotes the doping function, andR denotes the recombination/generation rate
which is assumed to be monotone with respect ton and p. One example is the (scaled)
Shockley–Read–Hall type recombination (cf. [14, Chap. 4]) given by

R(n, p) = np− 1

τn(p+ 1)+ τp(n+ 1)
,

whereτn andτp are positive constants. We assume that the boundary∂Ä of the device region
Ä is polygonal or polyhedral, and let∂ÄD ⊂ ∂Ä denote the union of all ohmic contacts
(i.e., terminals of a device) and∂ÄN the part of boundary such that∂ÄD ∪ ∂ÄN = ∂Ä. On
∂ÄD the values ofψ, n, and p are given as functions of the applied biasV and on∂ÄN

the normal derivatives ofψ, n, andp vanish because it is normally insulated. The current
flowing in or out of a terminalc∈ ∂ÄD is given by

I =
∫

c
(Jn + Jp) · n ds, (1.4)

wheren denotes the outward unit normal vector of∂ÄD. A typical 2D p-n diode with
two ohmic contacts is depicted in Fig. 1 where the interior curve, called thep-n junction,
represents the interface of thep andn regions. We denote this curve byC. For simplicity,
we assume, in the rest of this paper, that the doping functionN is a step function of the
form

N =
{

a in p-region

−b in n-region,
(1.5)

wherea and b are constants in the range from 1010 to 1020. It is expected that all the
techniques presented here are also applicable to the case of continuous doping profiles,

FIG. 1. A typical two-dimensional diode.
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though the latter case is not discussed in the present paper. Note thatN is also a function
of the p-n junction C. Given N, the dimension of a device, and the applied biasV , we
can solve (1.1)–(1.3) numerically using an appropriate numerical method and then evaluate
the terminal currentI (V) flowing in or out of the device using (1.4) (cf. [10, 11]). The
problem can be solved for various biasesV to obtain theV-I characteristic for a given
device.

In the conventional design cycle of a device, the above process will be repeated using
different doping functionsN and different geometries until theV-I characteristic matches
the required one within a given error range. This approach is time-consuming, because
after each iteration in the design cycle, the new values of the parameters to be used in
the next iteration are chosen empirically from previous experience which may be far away
from the optimal choice. In this paper the problem is posed as the following optimization
problem: given an idealV-I characteristic curveIg(v), find some physical and/or geometric
parameters such that theV-I characteristic of the device matches the ideal one optimally
with respect to a specified performance criterion. This problem is formulated as a nonlinear
optimization problem, and the cost function of the problem consists of two competing
quadratic terms with penalty parameters. By a judicious choice of these parameters, one
can balance the competing costs. Various existing efficient numerical methods are proposed
for the numerical solution of this nonlinear optimization problem. Due to the large variations
in the magnitude of parameters and the solutions to the semiconductor device equations,
the Jacobian of the optimization problem is ill-conditioned. To overcome this difficulty, a
scaling technique is proposed to balance the entries of the Jacobian so that the problem
is numerically more stable. This approach is applied to some test problems and all the
numerical results demonstrate the usefulness of the approach. To our best knowledge, little
work on this approach to semiconductor device design can be found in the literature (cf. [6]
and the references therein), though, in practice, it will dramatically reduce the time required
in the design cycle of a semiconductor device.

2. THE FORMULATION OF THE PROBLEM

We consider the formulation of the semiconductor device parameter design. For simplicity
we assume hereafter that the geometry of a device is rectangular or brick, and thus the
device region is̄Ä= [0, Lx]× [0, L y] in two dimensions or̄Ä= [0, Lx]× [0, L y]× [0, Lz]
in three dimensions. We also assume that thep-n junction of the device consists of line
segments or facets parallel to one of the axes. In this case, thep-n junction is uniquely
determined by its intercept on each of the axes in the interval [0, Lx], [0, L y], or [0, Lz].
Let cx denote the ratio of the the intercept on thex-axis andLx, cy the ratio of the intercept
on they-axis andL y, andcz the ratio of the intercept on thez-axis andLz. Then, thep-n
junction is uniquely determined bycx, cy, andcz. Using this notation, we formulate the
above parameter selection problem in semiconductor design as the following optimization
problem:

Problem 1. Given an idealV-I characteristic functionIg(v) on [0,Vmax], find the
doping parametersa, b, and the geometrical parametersLx, L y, Lz, cx, cy, andcz such
that

F(a, b, cx, cy, cz, Lx, L y, Lz) = α
∫ Vmax

0
(I (v)− Ig(v))

2 dv + β(L2
x + L2

y + L2
z

)
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is minimized subject to the bound constraints

1010 ≤ a ≤ 1020, (2.1)

1010 ≤ b ≤ 1020, (2.2)

cmin
x ≤ cx ≤ cmax

x , (2.3)

cmin
y ≤ cy ≤ cmax

y , (2.4)

cmin
z ≤ cz ≤ cmax

z , (2.5)

Lmin
x ≤ Lx ≤ Lmax

x , (2.6)

Lmin
y ≤ L y ≤ Lmax

y , (2.7)

Lmin
z ≤ Lz ≤ Lmax

z , (2.8)

whereLx, L y, andLz are the length, width, and height of the device,cx, cy, andcz are the
ratios defined before,α, β are two positive constants, andI is the terminal current.

This is a continuous least squares problem and the cost functionF contains two competing
performance criteria. This is becauseLx = L y= Lz= 0 is the obviously optimal solution
for the second term of the cost. Thus, we need to chooseα andβ properly to balance the
two terms inF . In practice, Problem 1 can be approximated by taking a set of appropriate
sampling pointsvi , i = 1, 2, . . . ,m, in [0,Vmax], leading to

Problem 2. Given an idealV-I characteristic functionIg(v)on [0,Vmax], find the doping
parametersa, b, and the geometrical parameterscx, cu, cz, Lx, L y, andLz such that

E(θ) = (I − I g)
T A(I − I g)+ β

(
L2

x + L2
y + L2

z

)
(2.9)

is minimized subject to (2.1)–(2.8), where

I = (I (v1, θ), I (v2, θ), . . . , I (vm, θ)),

I g = (Ig(v1), Ig(v2), . . . , Ig(vm)),

θ = (a, b, cx, cy, cz, Lx, L y, Lz)

andA= diag(αi ) is a diagonal matrix.

Hereαi > 0 (i = 1, 2, . . . ,m) andβ >0 are weights to be chosen later.
Problem 2 is a nonlinear optimization problem with only bound constraints. The nonlinear

differential equations (1.1)–(1.3) do not appear explicitly in the formulation, but the current
I depends on these equations through the expression (1.4). The dependence of the cost
function on the parameterθ and the applied biasv is complicated, and thus the solvability
of Problem 2 is theoretically difficult. (Even the solvability of the nonlinear PDE system
(1.1)–(1.3) is still an open problem unless under some restrictive assumptions (cf., for
example, [9]).) However, from our computational experience, Problem 2 is computable,
though local minima may exist, as will be seen in Section 4.
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3. THE NUMERICAL METHODS

We now consider the numerical solution of Problem 2.
Starting from an initial guessθ0, Problem 2 can be solved iteratively. At each step an

incrementδθi is calculated such that

E(θi + δθi )

is minimized with respect toδθi , whereθi andδθi are thei th approximation andi th increment
of θ , respectively. The iterative procedure continues until the relative error‖I − I g‖2/‖I g‖2
and the change in (Lx, L y, Lz) in the Euclidean norm‖L‖2 between two consecutive iter-
ations are smaller than a given tolerance.

The Gauss–Newton Method

To calculate the incrementδθi at each step, the Gauss–Newton Method is used. Let

Î = (I (v1, θ), I (v2, θ), . . . , I (vm, θ), Lx, L y, Lz)
T ,

Î g = (Ig(v1), Ig(v2), . . . , Ig(vm), 0, 0, 0)
T ,

B = diag(α1, . . . , αm, β, β, β).

Then

E(θ) = (Î − Î g)
T B(Î − Î g).

Let Î i = Î (θi ). Then Taylor’s formula for vector valued functions gives

Î = Î i + Ji δθi + 1

2

{
δθT

i G1δθi , . . . , δθ
T
i Gm+3δθi

}T
, (3.1)

where

Ji =



∂I (v1)

∂ai

∂I (v1)

∂bi

∂I (v1)

∂cxi

∂I (v1)

∂cyi

∂I (v1)

∂czi

∂I (v1)

∂Lxi

∂I (v1)

∂L yi

∂I (v1)

∂Lzi

...
...

...
...

...
...

...
...

∂I (vm)

∂ai

∂I (vm)

∂bi

∂I (vm)

∂cxi

∂I (vm)

∂cyi

∂I (vm)

∂czi

∂I (vm)

∂Lxi

∂I (vm)

∂L yi

∂I (vm)

∂Lzi

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


,

and the matrixG j denotes the Hessian ofÎ i
j evaluated atθi + r δθi with 0≤ r ≤ 1. Omitting

the second order term in (3.1), we have

Î = Î i + Ji δθi

whenδθi is small. Using this,E(θi + δθi ) can be approximated by

E(θi + δθi ) =
(
Î i + Ji δθi − Î g

)T
B
(
Î i + Ji δθi − Î g

)
= (Î i − Î g

)T
B
(
Î i − Î g

)+ (Î i − Î g
)T

B Ji δθi

+ (Ji δθi )
T B(Î i − Î g)+ (Ji δθi )

T B(Ji δθi ).
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FIG. 2. The cost function against doping concentrationsa andb.

This is a quadratic form inδθi , and the minimum pointδθ∗i of this quadratic function satisfies

∇E(θi + δθ∗i ) = 0,

which leads to (
JT

i B Ji
)
δθ∗i = −JT

i B(Î − Î g). (3.2)

The solution to (3.2) defines thei th search direction called the Gauss–Newton direction.

The Levenberg–Marquardt Method

From computational studies we see that the partial derivatives of the cost functionE with
respect to the parametersa andb in the doping function are large whena andb are close to
their lower bounds and small whena andb are close to their upper bound (see Fig. 2). Thus,
initial guesses fora andb are always chosen to be their lower bound 1010, and at the first
few iterations, we also need to restrict the step size to avoid oscillations. Mathematically,
this can be formulated as

min E(θi + δθi )

subject to(δθi )
T (δθi ) ≤ 1,

where1 is a positive constant. The above inequality constraint can be added to the cost
function to form

min E(θi + δθi )+ λ
{
1− (δθi )

T (δθi )
}
,

whereλ>0 is a penalty parameter called the Marquardt parameter. The optimal pointδθ∗i
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of this problem is given by(
JT

i B Ji + λI
)
δθ∗i = −JT

i B(Î − Î g),

whereI denotes the unit matrix. This method is called the Levenberg–Marquardt Method
(cf. [7, 8]) which is a combination of the Gauss–Newton Method and the Steepest Descent
Method (cf. [13]). The Marquardt parameterλ can be chosen properly to avoid unbounded
oscillation in the reestimation procedure. The same technique can also be applied to the
decision variablesa andb in the original cost function (2.9). This yields a cost function

Ê(θ) = (I − I g)
T A(I − I g)+ β

(
L2

x + L2
y + L2

z

)+ γ (a2+ b2)

corresponding to (2.9).
Let

ˆ̂I = (I (v1, θ), I (v2, θ), . . . , I (vm, θ), Lx, L y, Lz,a, b)
T ,

Î g = (Ig(v1), Ig(v2), . . . , Ig(vm), 0, 0, 0, 0, 0)
T ,

B̂ = diag(α1, . . . , αm, β, β, β, γ, γ ).

ThenÊ(θ) can be rewritten as

Ê(θ) = ( ˆ̂I − ˆ̂I g)
T B̂( ˆ̂I − ˆ̂I g).

The corresponding Levenberg–Marquardt correctionδθ∗ satisfies

(
ĴT

i B̂ Ĵi + λI
) · δθ∗i = − ĴT

i B̂( ˆ̂I − ˆ̂I g), (3.3)

where

Ĵi =



∂I (v1)

∂ai

∂I (v1)

∂bi

∂I (v1)

∂cxi

∂I (v1)

∂cyi

∂I (v1)

∂czi

∂I (v1)

∂Lxi

∂I (v1)

∂L yi

∂I (v1)

∂Lzi

...
...

...
...

...
...

...
...

∂I (vm)

∂ai

∂I (vm)

∂bi

∂I (vm)

∂cxi

∂I (vm)

∂cyi

∂I (vm)

∂czi

∂I (vm)

∂Lxi

∂I (vm)

∂L yi

∂I (vm)

∂Lzi

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


.

Using the correctionδθ∗i , we updatê̂I by

ˆ̂I = ˆ̂I i + Ĵi δθ
∗
i . (3.4)

The values of the elements in̂Ji may differ from each other by several orders of magnitude.
This may cause some stability problems in real computation. To avoid this, we scaleĴi by a
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diagonal matrixM with positive diagonal entries so thatĴi has more balanced entries. The
scaled equation corresponding to (3.3) is( ˆ̂JT

i B̂ ˆ̂Ji + λI
)
δθ̂∗i = − ˆ̂JT

i B̂( ˆ̂I − ˆ̂I g),

where

ˆ̂Ji = Ĵi M and δθ̂∗i = M−1δθ∗i . (3.5)

The updating formula corresponding to (3.4) then becomes

ˆ̂I = ˆ̂I i + ˆ̂Ji δθ̂
∗
i .

We comment that all the partial derivatives in̂Ji are approximated by forward finite
differences. More specically,

∂I (vi , θ)

∂θ j
' I (vi , θ + h · ej )− I (vi , θ)

h
, (3.6)

whereej is a unit vector andh is a small positive increment.
We also comment that the above method is based on the assumption that the independent

variable,v={v1, v2, . . . , vm}, does not contain any observation errors. This is because it is
normally not from an experimental observation. In the case thatv does contain observation
errors, the Orthogonal Distance Regression Method may be used, instead of the above
Gauss–Newton or Levenberg–Marquardt Method. For details of the Orthogonal Distance
Regression Method, we refer to [1].

Gummel’s Method

The solvability of the nonlinear system (1.1)–(1.3) in general is a long-standing open
problem, but in the case that theR= 0 and the applied bias is close to zero, it can be shown
that the system is unique solvable (cf., for example, [9]). In practice, this nonlinear system
can be solved iteratively by Gummel’s method [5] defined as

1. Given an initial value (ψ0, n0, p0) let k= 0.
2. Solve the following system sequentially for (ψk+1, nk+1, pk+1)

∇2ψk+1 = nk − pk − N,

∇ · (∇nk+1− nk+1∇ψk+1)− R(ψk+1, nk, pk) = 0,

∇ · (∇ pk+1+ pk+1∇ψk+1)− R(ψk+1, nk+1, pk) = 0,

with appropriate boundary conditions.
3. Test for convergence. If failed, increasek and repeat step 2.

In Step 2 of the above algorithm we deal with equations of the form

−∇ · (∇u− cu)+ Gu= F in Ä (3.7)

u
∣∣
∂ÄD
= 0, (∇u− cu) · n|∂ÄN = 0. (3.8)
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This problem can be solved effectively by the exponentially fitted finite volume method
discussed in [10, 11, 12]. We now give a brief account of this method in two dimensions.

The Exponentially Fitted Finite Volume Scheme

To discuss the exponential fitted finite volume scheme (cf. [10, 11, 12]), we first define
some meshes onÄ. Let T be any partition ofǞ by a set of triangles. LetX={xi }N1 be
the set of all vertices ofT andE={ei }M1 the set of edges ofT . Without loss of generality
we assume that the nodes in X and the edges inE are numbered such thatX′ = {xi }N ′1

andE′ = {ei }M ′1 are respectively the set of nodes inX not on∂ÄD and the set of edges inE
not on∂ÄD.

DEFINITION 3.1. T is a Delaunay mesh if, for everyt ∈ T , the circumcircle of the element
contains no other vertices inX (cf. [2]).

We assume henceforth thatT is a Delaunay triangulation.

DEFINITION 3.2. The Dirichlet tessellationD, corresponding to the triangulationT is
defined byD={di }N1 where the tile

di = {x ∈ Ä : |x − xi | < |x − xj |, xj ∈ X, j 6= i }

for all xi ∈ X (cf. [3]).

We remark that for eachxi ∈ X, the boundary∂di of the tile di is the polygon having
as its vertices the circumcentres of all triangles with common vertexxi . Each segment of
∂di is perpendicular to one of the edges sharing the vertexxi (see Fig. 3). The Dirichlet
tessellationD is a polygonal mesh dual to the Delaunay meshT . For eachi = 1, 2, . . . , N ′,
integrating (3.7)–(3.8) overdi and applying Green’s formula to the first term we have

−
∫
∂di

(∇u− cu) · n ds+
∫

di

Gu dÄ =
∫

di

F dÄ.

For i = 1, 2, . . . , N ′, let ui be the approximate value ofu(x) at xi . Using the one-point

FIG. 3. Part of a Delaunay meshT and dual Dirichlet tessellationD.
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FIG. 4. Notation for edges and nodes.

quadrature rule we have from the above

−
∫
∂di

(∇u− cu) · n ds+ Gi ui |di | = Fi |di |, (3.9)

whereGi =G(xi ) andFi = F(xi ). We now consider the approximation of the first term in
(3.9). Let Ii ={ j : ei, j ∈ E} denote the index set of neighbouring nodes ofxi , whereei, j

denotes the edge joiningxi andxj , as shown in Fig. 4. Since∂di is polygonal and each of
its sides is perpendicular to one of the edges joiningxi , we have

∫
∂di

(∇u− cu) · n ds=
∑
j∈Ii

(∫
l i, j

(∇u− cu) · ei, j ds

)
, (3.10)

wherel i, j denotes the segment of∂di perpendicular to the edgeei, j and is oriented coun-
terclockwise with respect toxi (see Fig. 4) andei, j denotes the unit vector fromxi to xj .
For any j ∈ Ii we now consider the two-point boundary value problem

∇(∇u · ei, j − ci, j u) · ei, j = 0 onei, j (3.11)

u(xi ) = ui , u(xj ) = u j , (3.12)

whereci, j is a constant approximation toc · ei, j on ei, j . Solving this equation analytically
we obtain

fi, j ≡ ∇u · ei, j − ci, j u = 1

|ei, j | (B(ci, j |ei, j |)u j − B(−ci, j |ei, j |)ui ), (3.13)

whereB(x) is the Bernoulli function defined by

B(x) =
{

x
ex−1 if x 6= 0,

1 if x = 0.
(3.14)
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Obviously fi, j defines a constant approximation to the integrand on the right side of (3.11).
Furthermore the solution of (3.10) also defines a piecewise exponential approximation to
the solution of (3.7) onei, j . Substituting (3.13) into (3.10) and the result into (3.9) we obtain

∑
j∈Ii

|l i, j |
|ei, j ‖di, j | (B(−ci, j |ei, j |)ui − B(ci, j |ei, j |u j )+ Gi u j = Fi , (3.15)

for all i = 1, 2, . . . , N ′. In matrix form, we have

(E + D)U = F,

where E and D denote the matrices corresponding respectively to the first and second
terms of (3.15),U= (u1, u2, . . . ,uN ′)

T andF= ( f1, f2, . . . , fN ′)
T . The matrixE+ D is

unsymmetric unlessci, j = 0 for all i = 1, 2, . . . , N ′ and all j ∈ Ii . However, it is easy to
verify that E is an M-matrix (cf. [11]).

We comment that the above method can be extended to three dimensions easily. A
detailed discussion of this can be found, for example, in [4]. We also comment that using
the numerical solution from the above discretization scheme, we can evaluate the currents
flowing in or out of a device, based on (1.4). For detailed discussions of this, we refer to
[10, 11, 4].

4. NUMERICAL EXPERIMENTS

The numerical methods described in the previous section are applied to some two- and
three-dimensional test problems. All computations were performed in Fortran 77 double
precision on a Unix Workstation. In what follows, we useobjective characteristicto denote
the discreteI -V characteristic generated by directly solving Eqs. (1.1)–(1.3) using a given
parameter set. This given parameter set is referred to asideal solution, and the solution to
Problem 2 using the objective characteristic is referred to asoptimal solution. In all the
examples below, the bounds in the constraints (2.6)–(2.8) are chosen to be

Lmin
x = Lmin

y = Lmin
z = 2µm, Lmax

x = Lmax
y = Lmax

z = 15µm.

Also, the incrementh in the finite difference approximation (3.6) is chosen to be 105

for the doping parametersa and b and 10−9 µm for Lx, L y, and Lz. The units for the
doping concentration parametersa andb and the geometric parametersLx, L y, andLz are
respectively 1/cm2 (or 1/cm3 in 3D) andµm. However, these are omitted below for brevity.

EXAMPLE 1. A Two-Dimensional Diode. A two-dimensional rectangular diode with
width Lx and heightL y, depicted in Fig. 5, is chosen to be our first test problem. The
p-region of the device is rectangular with width310Lx and height3

10L y, as shown in Fig. 5.
(Correspondingly,cx = cy= 7

10 in (2.3) and (2.4).) The parametersαi (i = 1, . . . ,m), β, and
γ are chosen to be 1026, 1010, and 10−18, respectively, and the scaling matrixM in (3.5)
is chosen to be diag (105, 105, 10−9, 10−9). This example is studied numerically in the
following two different situations.

Case 1. Decision variablesa, b, andLx = L y. In this case, we assume that the device
is a square and the doping function is piecewise constant. Thus, we are to determine three
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FIG. 5. A two-dimensional rectangular diode.

parameters:a, b in the doping function, and the dimension of the deviceLx = L y. Two
different discreteV-I characteristicsIg,1 and Ig,2, listed in Tables I and II, respectively,
are used as the objective characteristics. These objective characteristics are generated by
solving Eqs. (1.1)–(1.3) using the parameter sets(

a = 1014, b = 1014, Lx = 10, L y = 10
)

and (
a = 1016, b = 1016, Lx = 10, L y = 10

)
respectively for the applied forward biases listed in Tables I and II.

To solve the optimization problems, we choose the following stopping criteria:

1. the relative error‖I − I g‖2/‖I g‖2≤ 10−4 (10−11 for case 1, usingIg,1 and 10−6 for
Case 2, usingIg,1), and

2. the difference in(L2
x + L2

y)
1/2 between two consecutive iterates is smaller

than 10−3.

The solution procedure stops when both of the above criteria are satisfied. The results
obtained for various initial values are listed in Tables III and IV. From the tables we see that
the relative error is always smaller than 10−4. From the tables we also see that the optimal
solutions are very accurate forIg,1, and are reasonably close to the ideal solution forIg,2.

Case 2. Decision variablesa, b, Lx, andL y. This case differs from Case 1 in the way
that we do not assume thatLx = L y. Thus, there are four independent parameters to be
determined. The problem is solved using the objective characteristics listed in Tables I and II,
the same criterion as in Case 1 is used in this case, and the results are listed in Tables V and VI.

TABLE I

The V-I Characteristic I g,1

V 0.2143 0.2857 0.3571 0.4286 0.5

I 6.4903· 10−11 8.7707· 10−10 1.1387· 10−8 1.0729· 10−7 4.8370· 10−7
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TABLE II

The V-I Characteristic I g,2

V 0.2143 0.2857 0.3571 0.4286 0.5

I 4.1961· 10−13 6.6184· 10−12 1.0421· 10−10 1.6397· 10−9 2.5754· 10−8

TABLE III

The Results for Example 1, Case 1, UsingV-I Characteristic I g,1

Initial values Optimal solution

a b Lx L y a b Lx L y No. iter. Rel. err.

1.0e10 1.0e10 15.0 15.0 1.0e14 1.0e14 10.0 10.0 23 5.89e-13
1.0e11 1.0e11 15.0 15.0 1.0e14 1.0e14 10.0 10.0 22 1.74e-13
1.0e12 1.0e12 15.0 15.0 1.0e14 1.0e14 10.0 10.0 24 8.82e-14
1.0e13 1.0e13 15.0 15.0 1.0e14 1.0e14 10.0 10.0 21 7.92e-13
1.0e12 1.0e12 8.0 8.0 1.0e14 1.0e14 10.0 10.0 19 8.69e-12

TABLE IV

The Results for Example 1, Case 1, UsingV-I Characteristic I g,2

Initial values Optimal solution

a b Lx L y a b Lx L y No. iter. Rel. err.

1.0e12 1.0e12 15.0 15.0 9.75e15 1.03e16 9.39 9.39 57 5.50e-5
1.0e13 1.0e13 15.0 15.0 1.08e16 3.12e16 6.53 6.53 40 2.90e-5
1.0e11 1.0e11 15.0 15.0 5.27e15 7.12e16 11.8 11.8 65 1.51e-5
1.0e10 1.0e10 15.0 15.0 8.07e15 1.29e16 10.3 10.3 100 2.35e-5

TABLE V

The Results for Example 1, Case 2, UsingV-I Characteristic I g,1

Initial values Optimal solution

a b Lx L y a b Lx L y No. iter. Rel. err.

1.0e12 1.0e12 15.0 15.0 1.0e14 1.0e14 10.0 10.0 22 1.59e-8
1.0e10 1.0e10 15.0 15.0 1.0e14 1.0e14 10.0 10.0 19 8.18e-7
1.0e10 1.0e10 15.0 5.0 1.0e14 1.0e14 10.0 10.0 40 2.55e-8
1.0e12 1.0e12 15.0 5.0 1.0e14 1.0e14 10.0 10.0 84 3.96e-8

TABLE VI

The Results for Example 1, Case 2, UsingV-I Characteristic I g,2

Initial values Optimal solution

a b Lx L y a b Lx L y No. iter. Rel.err.

1.0e11 1.0e11 15.0 15.0 1.32e16 1.44e16 12.3 6.61 52 3.35e-5
1.0e12 1.0e12 15.0 15.0 1.42e16 1.38e16 12.2 6.40 53 5.53e-5
1.0e13 1.0e13 15.0 15.0 5.95e15 1.67e16 11.3 13.8 43 5.73e-5
1.0e12 1.0e12 5.0 5.0 1.77e16 2.25e16 12.5 3.79 40 9.61e-5
1.0e14 1.0e14 15.0 5.0 1.55e16 1.35e16 12.3 6.11 48 9.15e-5
1.0e10 1.0e10 15.0 5.0 1.85e16 1.07e16 13.7 7.41 46 6.93e-5
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TABLE VII

The V-I Characteristic I g,3

V 0.2143 0.2857 0.3571 0.4286 0.5

I 3.2050· 10−11 4.1269· 10−10 5.2201· 10−9 4.5746· 10−8 1.8943· 10−7

EXAMPLE 2. A Three-Dimensional Diode. The second test problem is chosen to be a
three-dimensional rectangular prismatic diode with widthLx, depthL y, and heightLz. The
p-region is also chosen to be a rectangular prism with width3

10Lx, depth 3
10L y, and height

3
10Lz. (Correspondingly, the constraints (2.3)–(2.5) are replaced bycx = cy= cz= 7/10.)
For simplicity, we assume thatLx = L y. Thus the decision variables area, b in the dop-
ing function, and the dimensions of the deviceLx = L y and Lz. The parametersαi (i =
1, . . . ,m), β, andγ are chosen to be 1026, 108, and 10−18, respectively, and the scaling
matrix M in (3.5) is chosen to be diag(105, 105, 10−9, 10−9, 10−9). Two different V-I
CharacteristicsIg,3 and Ig,4 listed in Tables VII and VIII, respectively, are used as the ob-
jective characteristics. These objective characteristics are generated by solving (1.1)–(1.3)
using the parameter sets

(
a = 1014, b = 1014, Lx = 10, L y = 10, Lz = 10

)
and (

a = 1016, b = 1016, Lx = 10, L y = 10, Lz = 10
)
,

respectively, for various applied forward biases. The solution procedure stops if the follow-
ing items are satisfied:

1. relative error‖I − I g‖2/‖I g‖2≤ 1.2× 10−4 (10−6 or the case usingIg,3) and
2. the difference in(L2

x + L2
y+ L2

z)
1/2 between two consecutive iterates is smaller

than 10−3.

Various initial values are used, and the results are listed in Tables IX and X, respectively.
From the tables we see that the relative errors are always smaller than 1.2× 10−4. It is also
seen that the optimal solutions are very accurate forIg,3, and are reasonably close to the
ideal solution forIg,4.

We remark that the optimal solutions forIg,2 andIg,4 are harder to obtain than forIg,1 and
Ig,3, since the partial derivatives of the cost functionE with respect to the doping parametera
andb are very small when the doping parameters are close to their upper bounds (cf. Fig. 2).

EXAMPLE 3. A Two-Dimensional Diode with a Variablep-n Junction. The third test
problem is chosen to be a two-dimensional rectangular diode with a variablep-n junction.
The configuration of the device is the same as that in Fig. 5, but thep-region has the width

TABLE VIII

The V-I Characteristic I g,4

V 0.2143 0.2857 0.3571 0.4286 0.5

I 2.1158· 10−13 3.3410· 10−12 5.2657· 10−11 8.2842· 10−10 1.2987· 10−8
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TABLE IX

The Results for Example 2, Using ObjectiveV-I Characteristic I g,3

Initial values Optimal solution

a b Lx = L y Lz a b Lx = L y Lz No. iter. Rel. err.

1.0e10 1.0e10 15.0 15.0 9.9e13 9.7e13 10.2 12.0 19 4.3e-7
1.0e12 1.0e12 15.0 15.0 1.0e14 1.0e14 10.0 10.0 24 6.6e-8
1.0e11 1.0e11 15.0 12.0 9.9e13 9.7e13 10.2 12.0 23 3.6e-7
1.0e12 1.0e12 15.0 10.0 1.0e14 1.0e14 10.0 10.0 19 2.2e-7
1.0e11 1.0e13 14.0 14.0 9.9e13 9.7e13 10.2 12.0 27 6.0e-7

(1− cx)Lx and the height(1− cy)L y wherecx andcy are the ratios defined in Section 2.
For simplicity, we assume thatLx = L y andcx = cy. Thus, the decision variables area,
b in the doping function, the dimension parameterLx = L y, and the parameter for the
p-n junction cx = cy. The penalty parametersαi (i = 1, . . . ,m), β, andγ are chosen to
be 1026, 1010, and 10−18, respectively, and the scaling matrixM in (3.5) is chosen to be
diag(105, 105, 10−9, 4.0× 10−9). The bounds in (2.3) and (2.4) are chossen to be

cmin
x = cmin

y = 0.6 and cmax
x = cmax

y = 0.75.

The incrementh in (3.6) forcx is chosen to be 4× 10−3.
To solve the problem, we choose theV-I characteristicIg,1, listed in Table I as the

objective characteristic, which is generated by solving (1.1)–(1.3) using the parameter set(
a = 1014, b = 1014, Lx = 10, L y = 10, cx = 0.7, cy = 0.7

)
.

The solution procedure stops when both of the conditions

1. the relative error‖I − I g‖2/‖I g‖2≤ 10−5, and
2. the difference in(L2

x + L2
y)

1/2 between two consecutive iterates is smaller than 10−3

are satisfied. Two initial guesses are used, and the results are listed in Table XI. From the
table we see that the relative errors are always smaller than 6.0× 10−6.

5. CONCLUSION

In this paper we posed the parameter selection in semiconductor device design as an
optimization problem with competing costs. Various existing efficient methods for

TABLE X

The Results for Example 2, Using ObjectiveV-I Characteristic I g,4

Initial values Optimal solution

a b Lx = L y Lz a b Lx = L y Lz No. iter. Rel. err.

1.0e10 1.0e10 15.0 15.0 1.1e16 9.9e15 11.5 15.0 31 1.0e-4
1.0e10 1.0e10 15.0 10.0 1.1e16 7.7e15 10.0 9.81 30 7.9e-5
1.0e11 1.0e11 15.0 9.0 1.6e16 6.0e15 10.7 10.6 30 6.7e-5
1.0e11 1.0e11 14.0 14.0 1.2e16 6.3e15 10.2 14.9 30 3.6e-5
1.0e13 1.0e11 14.0 14.0 1.2e16 8.8e15 11.4 14.8 30 8.9e-5
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TABLE XI

The Resuts for Example 3

Initial values Optimal solution

a= b Lx = L y cx = cy a b Lx = L y cx = cy No. iter Rel. err.

1.0e10 15.0 0.72 9.98e13 1.00e14 10.002 0.7008 25 5.6e-6
1.0e10 15.0 0.68 1.07e14 9.61e13 10.129 0.6773 22 5.5e-6

nonlinear optimization, nonlinear partial differential equations were discussed for the nu-
merical solution of this problem. A scaling technique was also proposed to avoid numerical
instability in computation. Numerical experiments for various model devices were per-
formed and the numerical results showed the effectiveness of the optimization approach to
the semiconductor device design.
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12. J. J. H. Miller and S. Wang, An exponentially fitted finite volume method for the numerical solution of 2d
incompressible flow problems,J. Comput. Phys.115, 56 (1994).

13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes in FORTRAN: The Art
of Scientific Computing, 2nd ed. (Cambridge Univ. Press, New York, 1992).

14. S. Selberherr,Analysis and Simulation of Semiconductor Devices(Springer-Verlag, Wien/New York, 1984).

15. W. V. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other semiconductors,Bell
Syst. Tech. J.29, 560 (1950).


	1. INTRODUCTION
	FIG. 1.

	2. THE FORMULATION OF THE PROBLEM
	3. THE NUMERICAL METHODS
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. NUMERICAL EXPERIMENTS
	FIG. 5.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI
	TABLE VII
	TABLE VIII
	TABLE IX

	5. CONCLUSION
	TABLE X
	TABLE XI

	ACKNOWLEDGMENT
	REFERENCES

